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In the primary visual cortex (V1) of many mammalian species,
neurons are spatially organized according to their preferred
orientation into a highly ordered map. However, whether and
how the various presynaptic inputs to V1 neurons are organized
relative to the neuronal orientation map remain unclear. To
address this issue, we constructed genetically encoded calcium
indicators targeting axon boutons in two colors and used them to
map the organization of axon boutons of V1 intrinsic and V2–
V1 feedback projections in tree shrews. Both connections are spa-
tially organized into maps according to the preferred orientations
of axon boutons. Dual-color calcium imaging showed that
V1 intrinsic inputs are precisely aligned to the orientation map
of V1 cell bodies, while the V2–V1 feedback projections are aligned
to the V1 map with less accuracy. Nonselective integration of in-
trinsic presynaptic inputs around the dendritic tree is sufficient to
reproduce cell body orientation preference. These results indicate
that a precisely aligned map of intrinsic inputs could reinforce the
neuronal map in V1, a principle that may be prevalent for brain
areas with function maps.

primary visual cortex | presynaptic inputs | dual-color calcium imaging |
orientation selectivity | visual circuitry

Neurons in the brain are often spatially organized into topo-
graphic maps according to their response properties. In the

primary visual cortex (V1) of many highly visual mammalian
species, neurons that respond to visual signals of similar orien-
tations are spatially clustered into iso-orientation domains. Such
iso-orientation domains are arranged circularly, with their pre-
ferred orientations shifting in a graded manner, around singu-
larities known as pinwheel centers (1–4). The neural mechanism
underlying the emergence of such pinwheel-like orientation
maps remains to be fully understood.
An important step to elucidate the formation of V1 orienta-

tion map is to determine whether and how the different types of
inputs received by V1 neurons are functionally organized. Besides
feedforward projections from the lateral geniculate nucleus,
V1 neurons receive major inputs from intrinsic connections
originating from other V1 neurons, as well as feedback projec-
tions from higher visual cortical areas such as V2. By tracing the
axon projections originating from neurons located at a single site,
previous works showed that both V1 horizontal and V2–V1
feedback axon boutons are clustered and biased to columns with
similar preferred orientation in a “like-to-like” manner (5–8).
Such studies, however, have not directly addressed the question
of how axon projections originating from different sites are or-
ganized when they converge to a common target area, a central
question from the postsynaptic perspective because each V1
neuron integrates inputs from thousands of presynaptic axon
boutons. If the axon boutons are spatially organized according to
their origins or response properties, it would result in a functional
map of presynaptic inputs that impose specific activity patterns to
the postsynaptic spines and influence how dendrites integrate
incoming information.

The development of highly sensitive genetically encoded cal-
cium indicators (GECIs) (9–13) has provided a direct method to
examine such questions by allowing the measurement of axon
bouton responses from specific neural pathways. These indica-
tors have been used to study several long-range projection
pathways such as those from V1 to higher visual areas (14, 15),
and from lateral geniculate nucleus to V1 (16–18) in rodents,
species in which the orientation preference of V1 neurons is
semirandomly distributed (19–21). To our knowledge, such an
approach has not been introduced to the study of axon projec-
tions in highly visual species that show orientation maps, the
presence of which suggests more precisely organized presynaptic
inputs. Furthermore, calcium indicators used in those previous
studies are freely distributed in the cytoplasm and not suitable
for imaging axon boutons of local circuits, because signals of
axon boutons could not be readily separated from those of
bypassing dendrites and axons.
In this study, by constructing GECIs that are designed to

target axon boutons specifically, we were able to map the func-
tional organization of the V1 intrinsic and V2–V1 feedback
projections in the tree shrew, a species with strong similarities
to primates in the organization of visual system (22). We found
that axon boutons of both input pathways are organized into
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orientation maps. Further examination using dual-color calcium
imaging showed that the orientation map of V1 intrinsic axon
boutons is precisely aligned with the map of V1 cell bodies,
whereas that of V2–V1 feedback projections is less well aligned.
Nonselective integration of intrinsic presynaptic inputs around
the dendritic tree is sufficient to reproduce cell body orientation
preference, suggesting that the functional map of intrinsic inputs
reinforces the V1 orientation map.

Results
GECIs for Imaging Axon Bouton Activities. To map the functional
organization of the presynaptic inputs to V1 neurons, we
attempted to construct GECIs targeting axon boutons to avoid
contaminating signals from bypassing dendrites and axons. Fol-
lowing previous reports (23, 24), we fused GCaMP6s to the cy-
tosol side of either the synaptic vesicle protein synaptophysin, or
the presynaptic membrane protein pre-mGRASP (Fig. 1A). To
test whether these fusion proteins are successfully targeted to
axon boutons, we expressed them in mouse V1 through ade-
noassociated virus (AAV) infection. We found that SyGCaMP6s,
the fusion protein between synaptophysin and GCaMP6s, were
highly localized as fluorescent puncta with a profile consistent to
that of axon boutons, while the fusion protein with pre-mGRASP
was not targeted with similar specificity (SI Appendix, Fig. S1A).
Further immunostaining experiments showed that SyGCaMP6s

strongly colocalized with the presynaptic marker synapsin but
not with the postsynaptic marker PSD-95, indicating successful
targeting to axon boutons (Fig. 1 B and C). Axon boutons
expressing SyGCaMP6s exhibited normal morphology, with no
change in size compared with control boutons (SI Appendix,
Fig. S1B).
Calcium indicators in multiple colors and with different bio-

physical properties could be flexibly combined for the simulta-
neous imaging of multiple neuronal populations (10, 25, 26). To
expand the toolbox for imaging presynaptic inputs, we targeted
several recently reported GECIs [including GCaMP6f (9),
RCaMP2 (11), jRGECO1a (10), and jRCaMP1b (10)] to axon
boutons, using strategies similar to that used for constructing
SyGCaMP6s (Fig. 1A). These indicators showed successful tar-
geting to axon boutons not only when expressed in cortex but
also in subcortical structures (SI Appendix, Fig. S1C). Expression
in the cortex of two other mammalian species, macaque monkeys
and tree shrews, also resulted in presynaptic targeting (SI Ap-
pendix, Fig. S1D). To evaluate the functionality of these indica-
tors in vivo, we expressed them in mouse V1 and compared the
visual responses of axon boutons expressing different indicators
(Fig. 1 D and E and SI Appendix, Fig. S2). The pair of green/red
indicators with the best in vivo performance, SyGCaMP6s and
SyJRGECO1a, was selected for further examination in tree
shrew V1. Similar to results from mouse, both indicators showed
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Fig. 1. Construction and characterization of presynaptic GECIs. (A) Presynaptic GECIs were constructed by fusing calcium indicators to the presynaptic
proteins synaptophysin or pre-mGRASP, separated by a short variable-length linker (colored in cyan). Numbers indicate the location of amino acids.
(B) Comparison of the expression pattern of SyGCaMP6s with that of synapsin, with example sites illustrating their colocalization shown Far Right. [Scale bars:
5 μm (Left) and 1 μm (Far Right).] (C) Comparison of the expression pattern of SyGCaMP6s with that of PSD-95, with example sites illustrating their adjacent
localization shown in the Far Right. [Scale bars: 5 μm (Left) and 1 μm (Far Right).] (D) Fraction of axon boutons responsive to drifting gratings for the pre-
synaptic GECIs constructed. Bottom and top whiskers, Minima and maxima; bottoms and tops of the boxes, first and third quartiles; central lines, medians.
Data were from two to three mice for each indicator. (E) Cumulative distribution of ΔF/F at preferred grating orientation for axon boutons expressing the
presynaptic GECIs. Abbreviations used in D and E are as follows: SyGC6f, SyGCaMP6f; SyGC6s, SyGCaMP6s; SyJRC1b, SyJRCaMP1b; SyJRG1a, SyJRGECO1a;
SyRC2, SyRCaMP2. (F and G) Responses of axon boutons expressing SyGCaMP6s and SyJRGECO1a to drifting gratings in tree shrew V1. (Left) Example images
of SyGCaMP6s and SyJRGECO1a fluorescence in vivo. Cell bodies devoid of fluorescence appear as “black holes” in the images. (Scale bar: 10 μm.) (Middle)
Representative calcium signals from individual axon boutons (scale bar: 2 μm), in response to drifting gratings of different directions. Traces in light gray
represent the individual trials, and traces in black represent their averages. The temporal period for stimulus ON is shaded in pink. (Right) Calcium signals from
all orientation-selective axon boutons in response to drifting gratings of four different orientations, with each row representing response over time for a
single bouton. Boutons were sorted according to their preferred orientations.
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robust orientation-selective responses to drifting gratings (Fig. 1
F and G and Movie S1), although the average peak response
amplitude of SyJRGECO1a was approximately one-half that of
SyGCaMP6s (SyGCaMP6s: ΔF/F = 0.64 ± 0.37; SyJRGECO1a:
ΔF/F = 0.32 ± 0.08, mean ± SD). Taken together, these data
show that the set of presynaptic-targeting GECIs we constructed
are sensitive and specific indicators of axon bouton activity
in vivo.

Orientation Map of Axon Boutons of V1 Intrinsic Connections. To
investigate the functional organization of V1 intrinsic connec-
tions in tree shrew, we expressed SyGCaMP6s in a large pop-
ulation of V1 neurons (mostly L2/3 and upper L5, covering
∼10 mm2 by multiple virus injections; SI Appendix, Materials and
Methods) and imaged the response patterns of axon boutons in
head-fixed awake animals. We imaged the axon boutons at the
center of the whole labeled area, ensuring that the sampled
boutons included both the local inputs (within 500 μm; ref. 5)
and the long-range inputs from more distant locations within the
injected area. When we recorded the SyGCaMP6s responses at a

lower resolution (1.2 × 1.2 μm2 per pixel) to obtain the large-
scale map, where the signal of each pixel may come from mul-
tiple axon boutons (as for all of the “large-scale maps” below),
we found that calcium signals in different cortical regions showed
maximal responses to gratings of distinct orientations (Fig. 2 A–
C). To visualize the large-scale orientation map, we calculated
the orientation preferences on a pixel-by-pixel basis and colored
each pixel according to its preferred orientation determined by
vector summation of the stimulus-evoked fluorescence change
(1, 2). The orientation map obtained exhibited the stereotypical
pinwheel-like structure, where the pinwheel centers were sur-
rounded by iso-orientation domains with preferred orientations
shifting in a graded manner (Fig. 2 B and C). Similar orientation
maps were found when the same area was mapped at different
depths from L1 to L2/3, suggesting that V1 intrinsic connections
are functionally organized into vertical columns according to
preferred orientation (Fig. 2 D and E and SI Appendix, Fig. S3).
We then imaged selected areas within the large-scale orien-

tation map at a higher spatial resolution (0.2 × 0.2 μm2 per pixel)
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Fig. 2. Large-scale orientation maps of V1 intrinsic inputs. (A) Calcium fluorescence changes (ΔF) of V1 intrinsic axon boutons to drifting gratings of eight
directions, mapped at a relatively lower resolution where the signal of each pixel may come frommultiple axon boutons, are shown in the outer eight images.
Image in the Center shows the anatomical structure obtained by averaging baseline fluorescence. (Scale bar: 100 μm.) (B) From the data shown in A, the
orientation map was calculated and shown in the Center, with each pixel color coded according to its preferred orientation. ΔF traces for an example region
of interest (ROI) (marked with a black box on the orientation map) in response to drifting gratings of different directions are shown in the outer eight images.
Traces in gray are results from individual trials, while traces in black represent their mean. The temporal period for stimulus ON is shaded in gray. (Scale bar:
100 μm.) (C) Similar to B, except that traces from another ROI (marked with a black box on the orientation map) are shown. (D) Large-scale orientation map of
the V1 intrinsic axon boutons at different cortical depths (labeled above each map). (Scale bar: 100 μm.) (E) Similarity between the orientation maps from
different depths, quantified by the circular correlation coefficient (48) between each map and the map of the deepest layer (300 μm).
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to examine the fine-scale organization of the orientation pref-
erence at the level of individual axon boutons. In total, we ex-
amined 53,263 axon boutons from four animals and found
26,908 axon boutons (50%) responding to drifting grating stim-
uli. Among those, 17,184 (64%) had significant tuning to a
specific orientation. Most orientation-selective axon boutons
showed preferred orientations similar to nearby boutons and
consistent to their locations in the large-scale map, although a
substantial percentage of axon boutons at both pinwheel centers
and iso-orientation domains showed significant deviations in
their preference from that of the large-scale map (Fig. 3 A–C).
These axon boutons with significant deviations were also less
orientation selective (Fig. 3 D and E, Wilcoxon rank-sum test,
P < 0.001 for boutons in both iso-orientation domains and pin-
wheel centers). When the local heterogeneity of the orientation
preferences of individual axon boutons was quantified (using the
measure of local circular dispersion; SI Appendix, Materials and
Methods), we found that iso-orientation domains exhibited lower
local heterogeneity than pinwheel centers (average circular dis-
persion: 25.7 ± 3.7° from 14 iso-orientation domains; 29.5 ± 4.0°
from 18 pinwheel centers; mean ± SD; Wilcoxon rank-sum test,
P = 0.01; Fig. 3F). Furthermore, the level of local heterogeneity
decreased with the distance from the pinwheel center (Pearson’s
correlation coefficient, r = −0.62, P = 0.0002, n = 32 regions; Fig.
3H). By contrast, the sharpness of orientation tuning for indi-
vidual axon boutons did not correlate with the distance from the
pinwheel center (Pearson’s correlation coefficient, P = 0.36, n =
32 regions; Fig. 3 G and I). Together, these results indicate that
individual axon boutons of V1 intrinsic connections with similar
orientation preference tend to cluster together, forming a large-

scale pinwheel-like map with striking similarities to the pre-
viously described V1 cell body maps (4, 20, 27, 28).
The fact that V1 intrinsic inputs are organized into an orien-

tation map clearly suggests that axon boutons surrounding indi-
vidual dendritic segments should tend to share similar preferred
orientations. Indeed, when we visualized the dendrites of single
neurons with a red fluorescent protein mRuby2 and character-
ized the orientation preference of V1 intrinsic axon boutons
within a distance of 4 μm to the dendritic segments (length: 51 ±
12 μm, mean ± SD; n = 19 segments), we found that boutons
surrounding individual dendritic branches showed a strong bias
in the distribution of preferred orientation, with an average
circular dispersion of ∼25° (SI Appendix, Fig. S4), similar to that
measured from the postsynaptic spines (29). Although the spatial
resolution of two-photon microscopy does not allow for the
identification of actual synaptic contacts, this result shows that
the presynaptic organization of V1 intrinsic axon boutons would
strongly favor postsynaptic functional clustering when no specific
connectivity rule was assumed.

Precise Alignment of V1 Intrinsic Axon Bouton Map with Cell Body
Map. To determine how the orientation map of V1 intrinsic axon
boutons is related to the map of V1 cell bodies, we directly
compared the two maps using a dual-color calcium imaging ap-
proach. V1 cell bodies were labeled with a red calcium indicator
jRGECO1a (10), whereas intrinsic axon boutons were labeled
with the green indicator SyGCaMP6s as above (Fig. 4A). Spec-
tral cross talk between the green and red channels was elimi-
nated by imaging the two indicators separately at different
excitation wavelengths (SI Appendix, Fig. S5; also SI Appendix,
Materials and Methods).
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We found that the red indicator jRGECO1a showed reliable
responses to visual stimuli, despite some visible accumulation in
lysosome-like structures as previously reported (10) (SI Appen-
dix, Fig. S6). Out of the 5,371 cell bodies expressing jRGECO1a
from four animals, 4,183 neurons (74 ± 8%; n = 4 animals)
responded to drifting grating stimuli, and among them 2,140
neurons (39 ± 7%; n = 4) showed statistically significant orien-
tation tuning. The orientation map of the cell bodies exhibited a
pinwheel-like structure at the single-cell level (Fig. 4 B and C).
Comparison of this cell body map with the large-scale intrin-
sic axon bouton map showed that the two maps were closely
aligned, with pinwheel centers located at the same sites and iso-
orientation domains arranged in the same sequences (Fig. 4 B–
E). At the single-cell level, the preferred orientation of each cell
body (θsoma) strongly correlated with the average preferred ori-
entation of surrounding axon boutons (θintrinsic), in both iso-
orientation domains and pinwheel centers (Fig. 4 F, G, and J).
The distribution of the difference (Δθ) between θsoma and
θintrinsic was centered sharply at zero (−1.1 ± 13°, mean ± SD;
n = 2,057 pairs; Fig. 4 H, I, and K), and significantly different
from that obtained after random shuffling of cell body locations
(two-sample Kolmogorov–Smirnov test, P < 10−4). A similar
distribution of Δθ (−0.6 ± 13°, mean ± SD; n = 199 pairs) was
obtained when we mapped the preferred orientations more
precisely using eight orientations instead of four (SI Appendix,
Fig. S7). Thus, the orientation preferences of V1 cell bodies were
closely matched to that of the nearby intrinsic axon boutons,
indicating a precise form of like-to-like connectivity that is ac-
curate up to the single-cell level.

Orientation Map of V2–V1 Feedback Projections. To study the
functional organization of V2–V1 feedback projections, we
identified the V1/V2 border by imaging intrinsic optical signals
(30) and labeled V2–V1 feedback axon boutons by injecting
SyGCaMP6s-encoding AAV in a large area of V2 (Fig. 5 A and
B). Labeled V2 axon boutons were mainly located at superficial
L1 in V1, consistent with previously described laminar distribu-

tion of V2–V1 feedback projections (31) (Fig. 5C), and showed
reliable responses to drifting gratings (Fig. 5 D–F). Out of
26,005 axon boutons, 9,047 boutons (35%) responded to drifting
grating stimuli, among which 5,006 (55%) were significantly
tuned to a specific orientation. Both the number of labeled axon
boutons and the number of orientation-selective boutons are
much larger in L1 than in L2/3, excluding the possibility that
significant numbers of V1 axon boutons are unintentionally la-
beled, through either virus leakage across V1/V2 border or ret-
rograde transport (SI Appendix, Fig. S8). Compared with V1
intrinsic axon boutons, the orientation tuning sharpness of V2–V1
feedback axon boutons was similar (Fig. 5G; Wilcoxon rank-sum
test, P = 0.94, n = 10 and 32 regions for feedback and intrin-
sic axon boutons), while the local heterogeneity of orienta-
tion preference was larger than that of iso-orientation domains
and not significantly different from that of pinwheel centers (Fig.
5 H and I; Wilcoxon rank-sum test, P = 0.02 for iso-orientation
domains and 0.55 for pinwheel centers). This suggests that the
axon boutons of V2–V1 feedback projections are less precisely
organized than V1 intrinsic axon boutons in their preferred
orientations.
To directly compare the orientation map of V2–V1 feedback

projections with the map of V1 intrinsic connections, we labeled
the feedback projections with SyGCaMP6s, and the V1 intrinsic
connections with SyJRGECO1a (Fig. 6A). We mapped the
feedback and intrinsic connections, respectively, at depths of
30 and 110 μm from the cortical surface, where the two sets of
axon boutons are concentrated. Dual-color calcium imaging at
the same regions showed that large-scale orientation maps from
the two projections were broadly similar (Fig. 6 B and C). The
differences (Δθ = θfeedback − θintrinsic) between the preferred
orientations of two maps were distributed with a peak around
zero (Fig. 6 D and E), whereas no such peak was found when the
orientation preferences of one map were shuffled (Fig. 6E; two-
sample Kolmogorov–Smirnov test, P < 10−4), indicating that the
orientation maps of these two sets of axon projections were
aligned. We note, however, that the alignment precision is lower
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than that between the orientation maps of V1 intrinsic axon
boutons and cell bodies, as indicated by the larger width of the Δθ
distribution (two-sample Kolmogorov–Smirnov test, P < 10−4).
Taken together, these results suggest that V2–V1 feedback axon
boutons are also organized into an orientation map that is aligned
with the V1 map, although with less precision than the V1 intrinsic
axon boutons.

Functional Implications of the Organized Presynaptic Inputs. How
does the organization of V1 intrinsic and V2–V1 feedback axon
boutons into orientation maps influence the orientation tuning
of V1 neurons? To address this question, we examined the dis-
tribution of entire dendritic trees of single V1 neurons (labeled
by mRuby2) relative to the large-scale orientation map of
V1 intrinsic inputs (labeled by SyGCaMP6s) imaged at a lower

resolution (Fig. 7 A and B and SI Appendix, Fig. S9A). Under the
assumption of nonselective connectivity between dendrites and
their surrounding axon boutons, we estimated the orientation
preference of input to each 1-μm dendritic segment with the
average SyGCaMP6s response surrounding the segment. When
the input orientation preferences of all 1-μm dendritic segments
of a single V1 neuron were pooled together, we found that the
distribution of preferred orientations exhibit a single peak for
each of the six neurons examined (Fig. 7 C and D and SI Ap-
pendix, Fig. S9B). Circular mean of the distribution agreed
closely to the preferred orientation of the cell body according to
its location in the orientation map (Fig. 7 C–E; linear regression,
R2 = 0.87, P = 0.006, n = 6 neurons), indicating that the orien-
tation preference of integrated V1 intrinsic inputs is matched to
neuronal output. The input distribution tended to be broader

Circular dispersion (°)

N
um

be
r o

f l
oc

at
io

ns

D E F

IG H

SyGCaMP6s

0 180
Preferred orientation (°)

0 20 400

40

80

200%
4s

1

2
4

3

1

2

3

4

A B

V1
V2

V1
D

V2

SyGCaMP6s C
DAPI

L1

L2/3

SyGCaMP6s
V1

Fee
db

ac
k

n.s. *

Int
rin

sic

50

60

Fee
db

ac
k

Int
rin

sic

ce
nte

r
Int

rin
sic

iso

15

25

35
n.s.

Tu
ni

ng
 w

id
th

 (°
)

C
irc

ul
ar

 d
is

pe
rs

io
n 

(°
)

Fig. 5. Orientation map of the V2–V1 feedback axon boutons. (A) Orien-
tation map of the visual cortex obtained by intrinsic imaging to identify the
V1/V2 border (dashed line). (Scale bar: 1 mm.) (B) Wide-field fluorescence
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from all of the locations. n.s., not significant.
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when the cell body was located closer to pinwheel centers (Fig.
7F; linear regression, R2 = 0.78, P = 0.02, n = 6 neurons), pos-
sibly leading to lower orientation selectivity for these neurons
(32, 33).
Given that the orientation preferences of the six neurons we

studied were matched to that of their estimated intrinsic input,
we further tested whether the cell body orientation map could be
predicted by the intrinsic input map (SI Appendix, Fig. S10),
based on the dual-color calcium imaging dataset where the re-
sponses of V1 cell bodies and intrinsic presynaptic inputs were
simultaneously recorded (Fig. 4 and SI Appendix, Fig. S10 A–C).
Because dendrites could not be traced for such densely labeled
neurons, we simulated 20 dendrites (each with a length of
150 μm pointing toward random directions; SI Appendix, Fig.
S10D) for each cell body and calculated the preferred orienta-
tion of the total intrinsic input from the surrounding axon bouton
responses using the same method as in Fig. 7. When each neuron
was colored according to the orientation preference of estimated
total intrinsic inputs, a pinwheel-like map that agreed closely
with the actual cell body map emerged (SI Appendix, Fig. S10 E
and F). Therefore, dendritic integration of functionally orga-
nized intrinsic inputs under the assumption of random connec-
tivity and uniform synaptic weight is sufficient to reproduce most
features of the cell body map, suggesting an important rein-
forcing role for the organized intrinsic inputs to the orientation
map of V1 cell bodies.

Discussion
In this work, we showed that the development of presynaptic
GECIs in two colors allows the direct comparison between the
functional organization of either two presynaptic inputs to, or the
input and output of specific neuronal populations. Using these
tools, we showed that axon boutons of V1 intrinsic and V2–
V1 feedback projections are both spatially organized into ori-

entation maps aligned with the V1 cell body map. Such ar-
rangements could result in strong postsynaptic clustering of
functionally similar inputs and reinforce the orientation maps
observed in V1 neurons.
Our results strongly support previous anatomical studies

showing a like-to-like connectivity for long-range horizontal
connections (5–7) and further shows that such a rule remains
accurate to the level of single neurons, in that the preferred
orientation of V1 neurons closely track the average preferred
orientation of the nearby V1 intrinsic axon boutons (Fig. 4). We
note that the use of relatively coarse orientation intervals (45°) in
most of our experiments sets a limit on how precise the degree of
matching could be measured, although control experiments with
a finer interval of 22.5° yielded similar results. Imaging of indi-
vidual axon boutons showed that, despite global matching, some
boutons could deviate significantly from the local average in
orientation preference, both in the iso-orientation domains and
around the pinwheel centers. Such deviations could be attrib-
uted to at least three possible factors. First, inhibitory axons are
reported to be less specific in targeting similar orientation do-
mains than excitatory axons (34). The fact that boutons with
larger deviations are less orientation-selective is consistent with
this possibility, since previous works have shown that inhibitory
V1 neurons are less orientation-selective than excitatory neu-
rons (35, 36). Second, axon boutons located close to the origi-
nating cell body have been shown to be less specific in targeting
than those more distantly located (5). Third, individual pyra-
midal neurons could also show different degrees of like-to-like
targeting (37). Axon boutons that deviate significantly from
the local average orientation preference may play a role in
neuronal computations that require converging information
from multiple orientations.
Our results provide a presynaptic perspective complementary to

a recent study of the functional organization of the postsynaptic
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spines in ferret V1 (29). In that work, spines with similar preferred
orientations are frequently found to cluster on the same branches,
with a degree of homogeneity (circular dispersion of preferred
orientation, ∼20°) similar to that found here for the V1 intrinsic
axon boutons surrounding dendritic segments (SI Appendix, Fig.
S4). These results suggest that organized presynaptic axon boutons
strongly favor postsynaptic functional clustering, and that such
clustering could be prevalent in cortical areas with functional maps
of presynaptic inputs. Interestingly, recent studies on rodent
V1 showed that inputs with similar receptive fields are likely to
cluster on neighboring spines (38), while inputs with similar pre-
ferred orientations are scattered without obvious functional clus-
tering (9, 39), perhaps because of the presence of presynaptic
maps for the former but not the latter. A more detailed com-
parison between the functional organizations of axon boutons and
spines would require the identification of actual synaptic contacts
and the simultaneous mapping of presynaptic and postsynaptic
activities (10, 24, 25, 40, 41).
The contribution of intracortical inputs to the orientation

tuning of V1 neurons and the formation of V1 orientation map
has been controversial (42). Our results showed that non-
selective dendritic integration of the organized V1 intrinsic
inputs is sufficient to yield an orientation map of cell bodies
closely similar to that actually measured (Fig. 7 and SI Ap-
pendix, Fig. S10). More selective sampling of presynaptic inputs
by postsynaptic spines, as has been reported from mouse V1
(43), could further strengthen the orientation tuning of
V1 neurons. It is possible that the organized intrinsic inputs, if
present relatively early during development, would facilitate
the initial formation of the cell body orientation map. Alter-
natively, cell body maps could be initially established by the
feedforward inputs (44), and then strengthened and stabilized
by the organized intrinsic inputs (45, 46). Further studies on the
temporal sequence of orientation map formation for V1 cell
bodies and presynaptic inputs will shed more light on this issue.
The V2–V1 feedback projections are less organized according
to preferred orientations, suggesting that their contribution to
V1 neuron orientation selectivity is secondary to the intrinsic
inputs. Instead, these projections may play a more important

role in facilitating the detection of more elongated spatial
structures beyond the receptive field of single V1 neurons.
The method we used here to label the V1 intrinsic and V2–

V1 feedback projections has some important limitations. For
example, although we performed multiple virus injections to la-
bel the V1 intrinsic connections, such labeling could not cover
the entire V1, and those connections originating from the more
distant sites may be underrepresented in our samples. Our la-
beling method also resulted in a mixture of boutons originating
from multiple cortical layers and neuronal subtypes that are not
completely specified by the experimenter. It is worth noting that
axon boutons originating from different layers or neuronal sub-
types might exhibit distinct functional organizations, a possibility
that could be addressed in further studies. For example, re-
cent development of novel vectors targeting inhibitory neurons
should allow the comparison of the functional organization of
inhibitory axon boutons with that of excitatory axon boutons
(47). Elucidating how these different sources of presynaptic in-
puts are organized in a coordinated manner and integrated by
the postsynaptic dendrites to generate the neuronal response
properties would be a critical step toward understanding the
computational principles in V1.

Materials and Methods
Experimental procedures for plasmid construction, animal surgery, calcium
imaging, and data analysis are described in detail in SI Appendix, Materials
and Methods. All experimental procedures were approved by the In-
stitutional Animal Care and Use Committee of the Institute of Neuroscience,
Chinese Academy of Sciences.
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